UNIVERSITY LIVERPOO	of OL

Year 1 MBChB -Gastrointestinal system

I've got that gut feeling motility in the GI tract

Prof. Barry Campbell

Infection Biology & Microbiomes, IVES

bjcampbl@liv.ac.uk http://pcwww.liv.ac.uk/~bjcampbl/gimotility.htm

School of Medicine

Slide 2

Learning Outcomes:

- LO1 Explain the integration and control mechanisms of swallowing (oral, pharyngeal and oesophageal phases) and control of lower oesophageal sphincter function.
- $\ensuremath{\text{LO2}}$ Define the motility patterns in fasted and fed states of the stomach and intestinal tract
- LO3 Define motility in the small and large intestine (peristalsis, haustrations, mass movements)
- LO4 Define how we remove indigestible matter (anatomy of the ano-rectum, defecation and external anal sphincter control)

Slide 3

Swallowing (deglutition)

Three phases to swallowing - one voluntary (conscious), two involuntary (unconscious) control

Phase II - PHARYNGEAL
Nasal Cavity INVOLUNTARY

- Food bolus formed by mastication
- Tongue moves up and backwards

Soft palate rises Epiglottis closes Pharynx contracts UOS relaxes,

- UOS contracts
- Bolus moved by peristalsis
- LOS relaxes, then contracts

LO2 Swallowing (deglutition) Phase I - ORAL VOLUNTARY mastication backwards

Phase I - the oral phase of swallowing (voluntary)

Hypoglossal (XII cranial) nerve plays a key role

- > provides motor innervation to tongue and many of the suprahyoid muscles
- stabilising the lower jaw bone. supports preparation, formation, positioning and transport of the food bolus ready to swallow.

Slide 5

Slide 6

Slide 8

Slide 9

11

Slide

12

Basal underlying smooth muscle tension – Interstitial cells of Cajal are pacemakers of the gut

- primitive myofibroblast-like cells that are electrically rhythmic.
- Found within both circular and longitudinal muscle layers, and submucosa, closely associated with myenteric and submucosal nerve plexi
- ICC form synapse-like junctions with enteric nerves and gap junctions with smooth muscle cells to conduct slow waves and transmit signal
- Frequency of waves Stomach 3/min; duo 11-13/min, ileum 9-10/min, colon 3-4/min
- They are sensitive to stretch in addition to a number of enteric neurotransmitters including acetylcholine, ATP and NO

Slide

13

I - quiescence; II - random contractions; III - burst of contractions (max. amplitude & duration); IV - rapid decrease of contractions.

14

Slide

15

Slide

16

17

LO2 LO3 Removing indigestible material Defaecation reflex DISTENSION (FAECES/FLATUS) Modulated by the sacral region (S2-S3) ⊕, parasympathetic pelvic nerves
> Contraction - sigmoid colon and rectum (Ach)
> Relaxation IAS (circular smooth muscle) & rectum Ad pelvic floor muscles (to straighten and prevent anal prolapse) VIP/ATP Distention > The EAS remains contracted (striated muscle - somatic innervation) FAECES ATP This gives the urge to defaecate! Ó EAS Correct ano-rectal angle (45° squat) is most Pudendal efficient anus voluntary control via the Pudendal nerve (cerebral cortex - somatic nerves - relax Passing of stool striated muscle)

Slide

18

